

An introduction to BeeGFS®

Frank Herold, Sven Breuner

June 2018 – v2.0

 1

Abstract

The scope of this paper is to give an overview on the parallel cluster file system

BeeGFS and its basic concepts. It is intended as a first source of information for

people interested in using BeeGFS and before moving on to more technical

documentation or to a first installation.

 2

Index
1. Overview .. 3

2. General Architecture ... 5

2.1 The Management Service .. 6

2.2 The Metadata Service .. 7

2.3 The Storage Service ... 8

2.4 The Client Service .. 10

2.5 Admon: Administration and Monitoring System .. 10

3. Built-in Replication: Buddy Mirroring™ ... 11

3.1 Storage Service Buddy Mirroring... 12

3.2 Metadata Service Buddy Mirroring ... 14

4. Storage Pools ... 14

5. BeeOND: BeeGFS On Demand ... 16

6. Cloud Integration ... 17

7. Getting started and typical Configurations ... 18

8. Contact Information .. 18

 3

1. Overview

BeeGFS is the leading parallel cluster file system. It has been developed with a

strong focus on maximum performance and scalability, a high level of flexibility

and designed for robustness and ease of use.

BeeGFS is a software-defined storage based on the POSIX file system interface,

which means applications do not have to be rewritten or modified to take

advantage of BeeGFS. BeeGFS clients accessing the data inside the file system,

communicate with the storage servers via network, via any TCP/IP based

connection or via RDMA-capable networks like InfiniBand (IB), Omni-Path (OPA)

and RDMA over Converged Ethernet (RoCE). This is similar for the communication

between the BeeGFS servers.

Furthermore, BeeGFS is a parallel file system. By transparently spreading user

data across multiple servers and increasing the number of servers and disks in the

system, the capacity and performance of all disks and all servers is aggregated in a

single namespace. That way the file system performance and capacity can easily

be scaled to the level which is required for the specific use case, also later while

the system is in production.

BeeGFS is separating metadata from user file chunks on the servers. The file

chunks are provided by the storage service and contain the data, which users

want to store (i.e. the user file contents), whereas the metadata is the “data

about data”, such as access permissions, file size and the information about how

the user file chunks are distributed across the storage servers. The moment a

client has got the metadata for a specific file or directory, it can talk directly to the

storage service to store or retrieve the file chunks, so there is no further

involvement of the metadata service in read or write operations.

BeeGFS adresses everyone, who needs large and/or fast file storage. While

BeeGFS was originally developed for High Performance Computing (HPC), it is

used today in almost all areas of industry and research, including but not limited

to: Artificial Intelligence, Life Sciences, Oil & Gas, Finance or Defense. The concept

of seamless scalability additionally allows users with a fast (but perhaps irregular

or unpredictable) growth to adapt easily to the situations they are facing over

time.

An important part of the philosophy behind BeeGFS is to reduce the hurdles for its

use as far as possible, so that the technology is available to as many people as

possible for their work. In the following paragraphs we will explain, how this is

achieved.

BeeGFS is a scale-out

network file system

based on POSIX, so

applications do not

need to be modified.

At-A-Glance

BeeGFS spreads data

across multiple

servers to aggregate

capacity and

performance of all

servers.

 4

BeeGFS is open-source and the basic BeeGFS file system software is available free

of charge for end users. Thus, whoever wants to try or use BeeGFS can download

it from www.beegfs.io. The client is published under the GPLv2, the server

components are published under the BeeGFS EULA.

The additional Enterprise Features (high-availability, quota enforcement, and

Access Control Lists) are also included for testing and can be enabled for

production by establishing a support contract with ThinkParQ. Professional

support contracts with ThinkParQ ensure, that you get help when you need it for

your production environment. They also provide the financial basis for the

continuous development of new features, as well as the optimization of BeeGFS

for new hardware generations and new operating system releases. To provide

high quality support around the globe, ThinkParQ cooperates with international

solution partners.

System integrators offering turn-key solutions based on BeeGFS are always

required to establish support contracts with ThinkParQ for their customers to

ensure, that help is always available when needed.

Originally, BeeGFS was developed for Linux and all services, except for the client

are normal userspace processes. BeeGFS supports a wide range of Linux

distributions such as RHEL/Fedora, SLES/OpenSuse or Debian/Ubuntu as well as a

wide range of Linux kernels from ancient 2.6.18 up to the latest vanilla kernels.

Additionally, a native BeeGFS Windows client is currently under development to

enable seamless and fast data access in a shared environment.

Another important aspect of BeeGFS is the support for different hardware

platforms, including not only Intel/AMD x86_64, but also ARM, OpenPOWER and

others. As the BeeGFS network protocol is independent of the hardware platform,

hosts of different platforms can be mixed within the same file system instance,

ensuring that sysadmins can always add systems of a new platform later

throughout the life cycle of the system.

BeeGFS is open-

source and comes

with optional

Enterprise features

like high availability.

BeeGFS can be

accessed from

different operating

systems and runs on

different platforms,

including ARM and

OpenPOWER.

https://www.beegfs.io/

 5

2. General Architecture

The BeeGFS architecture is composed of four main services:

• Management service: A registry and watchdog for all other services

• Storage service: Stores the distributed user file contents

• Metadata service: Stores access permissions and striping information

• Client service: Mounts the file system to access the stored data

In addition to the main services list above, BeeGFS also comes with an optional

graphical administration and monitoring service (the so-called “admon”).

Figure 1: BeeGFS Architecture Overview

All BeeGFS services write a log file with the corresponding service name to

/var/log/beegfs-*.log

For high flexibility, it is possible to run multiple instances with any BeeGFS service

on the same machine. These instances can be part of the same BeeGFS file system

instance or as well of different file system instances. One typical example is the

client service, that can mount two different BeeGFS file systems (e.g. an old one

and a new one) on the same compute node.

BeeGFS file systems

consist of 4 services:

The management,

storage, metadata,

and client service.

All BeeGFS services

can run either

exclusively on

dedicated machines

or side-by-side on the

same machines.

 6

High flexibility and easy administration is also given since the BeeGFS

management, meta, and storage services do not access the disks directly. Instead,

they store data inside any local Linux POSIX file system, such as ext4, xfs or zfs.

This provides the flexibility to choose the underlying file system which works best

for the given service, use case or hardware and makes it also easy to explore how

BeeGFS stores files.

The underlying file system in which the BeeGFS services store their data are called

management, metadata, or storage targets. These correspond to the name of the

BeeGFS service, that uses the target to store its data. While the BeeGFS

management and metadata service each use a single target per service instance,

the storage service supports one or multiple storage targets for a single storage

service instance.

This software-based approach without any strict requirements for the hardware

provides the possibility to choose from a very wide range of hardware

components. In the following chapters, we will discuss the BeeGFS services and

flexibility in more detail.

2.1 The Management Service

Figure 2: Management Service

The management service can be figured as a “meeting point” for the BeeGFS

metadata, storage, and client services. It is very light-weight and typically not

running on a dedicated machine, as it is not critical for performance and stores no

user data. It is watching all registered services and checks their state. Therefore, it

is the first service, which needs to be setup in a newly deployed environment.

The management service maintains a list of all other BeeGFS services and their

state.

BeeGFS runs on top of

local Linux file

systems, such as ext4,

xfs or zfs.

The management

service is only the

“meeting point” for

the other services and

not involved in actual

file operations.

 7

2.2 The Metadata Service

Figure 3: Metadata Service

The metadata service stores information about the data e.g. directory

information, file and directory ownership and the location of user file contents on

storage targets. It provides information about the location (the so-called “stripe

pattern”) for an individual user file to a client when the client opens the file, but

afterwards the metadata service is not involved in data access (i.e. for file read

and write operations) until the file is closed.

The BeeGFS metadata service is a scale-out service, meaning there can be one or

many metadata services in a BeeGFS file system. Each metadata service is

responsible for its exclusive fraction of the global namespace, so that having more

metadata servers improves the overall system performance. Adding more

metadata servers later is always possible.

Each metadata service instance has exactly one metadata target to store its data.

On the metadata target, BeeGFS creates one metadata file per user-created file.

This is an important design decision of BeeGFS to avoid the case of storing all

metadata inside a single database that could possibly get corrupted.

Usually, a metadata target is an ext4 file system based on a RAID1 or RAID10 of

flash drives, as low metadata access latency improves the responsiveness of the

file system. BeeGFS metadata is very small and grows linear with the number of

user-created files. 512GB of usable metadata capacity are typically good for about

150 million user files.

As low metadata access latency is a major benefit for performance of the overall

system, faster CPU cores will improve latency.

The metadata service

is a scale-out service,

meaning there can be

an arbitrary number

of metadata services

to increase

performance.

Metadata is very

small and typically

stored on flash drives.

 8

2.3 The Storage Service

Figure 4: Storage Service

The storage service (sometimes also referred to as the “object storage service”) is

the main service to store striped user file contents, also known as data chunk files.

Similar to the metadata service, the BeeGFS storage service is based on a scale-

out design. That means, you can have one or multiple storage services per BeeGFS

file system instance, so that each storage service adds more capacity and

especially also more performance to the file system.

A storage service instance has one or multiple storage targets. While such a

storage target can generally be any directory on a local filesystem, a storage

target typically is a hardware RAID-6 (typically composed of 8+2 or 10+2) or zfs

RAIDz2 volume, of either internal or externally attached drives.

The storage service works with any local Linux POSIX file system. Usually, the

storage targets are based on xfs in the case of hardware RAID controllers.

In contrast to the metadata service, many people try to optimize the traffic on the

storage targets for large sequential access to have optimal performance on

spinning disks. However, as BeeGFS uses all the available RAM on the storage

servers (which is not otherwise allocated by processes) automatically for caching,

it can also aggregate small IOs requests into larger blocks before writing the data

out to disk. Furthermore it is able to serve data from the cache if it has already

been recently requested by another client.

The capability to quickly write bursts of data into the server RAM cache or to

quickly read data from it is also the reason why it makes sense to have a network

that is significantly faster than the disk streaming throughput of the servers.

The storage service

stores the user file

contents.

The storage service

typically uses RAID6

or RAIDz2 volumes as

storage targets.

 9

To distribute the used space and to aggregate the performance of multiple servers

even for a single large file, BeeGFS uses striping, which means the file gets split up

into chunks of fixed size and those chunks are distributed across multiple storage

targets.

The chunksize and number of targets per file is decided by the responsible

metadata service when a file gets created. This information is called the stripe

pattern. The stripe pattern can be configured per directory (e.g. by using the

beegfs-ctl command line tool) or even for individual files (e.g. by using the BeeGFS

Striping API).

The files on the storage targets containing the user data are called chunk files. For

each user file, there is exactly one chunk file on the corresponding storage

targets. To not waste space, BeeGFS only creates chunk files when the client

actually writes data to the corresponding target. And also, for not wasting space,

the chunk size is not statically allocated, meaning when the user writes only a

single byte into the file, BeeGFS will also create only a single chunk file of 1 byte in

size.

By default, BeeGFS picks the storage targets for a file randomly, as this has shown

to provide best results in multi-user environments where (from the point of view

of the file system) the different users are also concurrently creating a random mix

of large and small files. If necessary, (e.g. to have deterministic streaming

benchmark results) different target choosers are available in the metadata service

configuration file.

To prevent storage targets running out of free space, BeeGFS has three different

labels for free target capacity: normal, low and emergency (the latter meaning

only very little space left or the target is unreachable). The target chooser running

on the metadata service will prefer targets labeled as normal. As long as such

targets are available, and it will not pick any target labeled as critical before all

targets entered that state. With this approach, BeeGFS can also work with storage

targets of different sizes. The thresholds for low and emergency can be changed

in the management service configuration file.

Even a single large

file is distributed

across multiple

storage targets for

high throughput.

Different target

chooser algorithms

are available to

influence the

placement of files on

storage targets.

https://www.beegfs.io/wiki/StripingAPI
https://www.beegfs.io/wiki/StripingAPI

 10

2.4 The Client Service

BeeGFS comes with a client that registers natively with the virtual file system

interface of the Linux kernel for maximum performance. This kernel module has

to be compiled to match the used kernel, but don’t worry: The kernel module

source code is included in the normal client package and compilation for the

currently running Linux kernel happens fully automatically, so there are no

manual steps required when you update your Linux kernel or when you update

the BeeGFS client service. The installation or a BeeGFS client update can even be

done without rebooting the machine.

The client kernel module uses an additional userspace helper daemon for DNS

lookups and to write the log file.

When the client is loaded, it will mount the file systems defined in beegfs-

mounts.conf instead of the usual Linux approach based on /etc/fstab (which is

also possible with BeeGFS, but not recommended). This is an approach of starting

the beegfs-client like any other Linux service through a service start script. It

enables the automatic recompilation of the BeeGFS client module after system

updates and makes handling of the BeeGFS client service generally more

convenient.

The native BeeGFS client should be used on all hosts that are supposed to access

BeeGFS with maximum performance. However, it is also possible to re-export a

BeeGFS mountpoint through NFSv4 or through Samba or to use BeeGFS as a drop-

in replacement for Hadoop’s HDFS. Upcoming releases of BeeGFS will also provide

a native BeeGFS client for Windows.

2.5 Admon: Administration and Monitoring System

In addition to the beegfs-ctl command line tool, the optional BeeGFS

Administration and Monitoring system (short: admon) provides a graphical

interface to perform basic administrative tasks and to monitor the state of the file

system and its components.

The BeeGFS admon consists of two parts:

• The admon backend service, which runs on any machine with network

access to the metadata and storage services. This service gathers the

status information of the other BeeGFS services and stores it in a

database.

The client is

automatically built

for the currently

running Linux kernel,

so that kernel

updates require no

manual intervention.

Access to BeeGFS

through NFS, CIFS or

from Hadoop is also

possible.

 11

• The graphical Java-based client, which runs on your workstation. It

connects to the remote admon daemon via http.

Figure 5: Admon GUI - Client Operation Statistics

3. Built-in Replication: Buddy Mirroring™

With BeeGFS being a high-performance file system, many BeeGFS users try to

optimize their systems for best performance for the given budget. This is because

with an underlying RAID-6, the risk of loosing data on the servers is already very

low. So the only remaining risk for data availability is the relatively low risk of

server hardware issues like mainboard failures. But even in this case, data is not

lost, but only temporarily unavailable. Clients that need to access the data of

unavailable servers will wait for a configurable amount of time (usually several

minutes). If the server is available again within this time, the client will continue

transparently for the application. This mechanism also enables transparent rolling

updates. If the server does not come back within this time frame, the client will

report an error to the application. This is useful to prevent the system from

hanging completely when a server is down.

However, there are of course systems where this small risk of data unavailability is

not acceptable.

The classic approach to this is hardware shared storage, where pairs of two

servers have shared access to the same external JBOD. While this approach is

possible with BeeGFS, it complicates the system administration due to the shared

BeeGFS can easily

reintegrate servers

that were temporarily

unavailable.

 12

disks and it requires extra services like pacemaker to manage the failover. This

approach also only moves the availability problem from the servers to the shared

JBOD and does not reduce the risk of data loss if there is a problem with a RAID-6

volume.

Thus, BeeGFS comes with a different mechanism that is fully integrated (meaning

no extra services are required) and which does not rely on special hardware like

physically shared storage. This approach is called Buddy Mirroring, based on the

concept of pairs of servers (the so-called buddies) that internally replicate each

other and that help each other in case one of them has a problem.

Compared to the classic shared storage approach, Buddy Mirroring has the

advantage that the two buddies of a group can be placed in different hardware

failure domains, such as different racks or even different adjacent server rooms,

so that your data even survives if there is a fire in one of the server rooms. Buddy

Mirroring also increases the level of fault tolerance compared to the classic

approach of shared RAID-6 volumes, because even if the complete RAID-6 volume

of one buddy is lost, the other buddy still has all the data.

For high flexibility, Buddy Mirroring can be enabled for all data or only for subsets

of the data, e.g. based on individual directory settings, which are automatically

derived by newly created subdirectories. Buddy Mirroring can also be enabled

anytime later while data is already stored on the system.

Buddy Mirroring is synchronous (which is important for transparent failovers),

meaning the application receives the I/O completion information after both

buddies of a group received the data. The replication happens over the normal

network connection, so no extra network connection is required to use Buddy

Mirroring.

Buddy Mirroring can be enabled individually for the metadata service and the

storage service.

3.1 Storage Service Buddy Mirroring

A storage service buddy group is a pair of two targets that internally manages

data replication between each other. In typical setups with an even number of

servers and targets, the buddy group approach allows up to a half of all servers in

a system to fail with all data still being accessible.

Integrated Buddy

Mirroring provides

increased flexibility

and protection

compared to classic

shared storage

approaches.

 13

Figure 6: Storage Service Buddy Mirror Groups

Storage buddy mirroring can also be used with an odd number of storage servers.

This works, because BeeGFS buddy groups are composed of individual storage

targets, independent of their assignment to servers, as shown in the following

example graphic with 3 servers and 2 storage targets per server. (In general, a

storage buddy group could even be composed of two targets that are attached to

the same server.)

Figure 7: Storage Mirroring with odd Number of Servers

In normal operation, one of the storage targets (or metadata targets) in a buddy

group is labeled as primary, whereas the other is labeled as secondary. These

roles can switch dynamically when the primary fails. To prevent the client from

sending the data twice (and thus reducing the maximum client network

 14

throughput), modifying operations will always be sent to the primary by the

client, which then takes care of the internal data forwarding to the secondary,

taking advantage of the full-duplex capability of modern networks.

If the primary storage target of a buddy group is unreachable, it will get marked as

offline and a failover to the secondary will be issued. In this case, the former

secondary is going to be the new primary. Such a failover is transparent and

happens without any loss of data for running applications. The failover will

happen after a short delay to guarantee the consistency of the system while the

change information is propagated to all nodes.

If a failed buddy comes back, it will automatically resynchronize with the primary.

To reduce the time for synchronization, the storage buddies only synchronize files

that have changed while the other machine was down.

The beegfs-ctl command line tool can be used to configure the buddy groups,

enable or disable mirroring and to check the state of the buddies.

3.2 Metadata Service Buddy Mirroring

As described in 3.1 the same concept and methodology can be used for metadata

service buddy mirroring.

4. Storage Pools

While all-flash systems usually are still too expensive for systems that require

large capacity, a certain amount of flash drives is typically affordable in addition to

the spinning disks for high capacity. The goal of a high-performance storage

system should then be to take optimal advantage of the flash drives to provide

optimum access speed for the projects on which the users are currently working.

One way to take advantage of flash drives in combination with spinning disks is to

use the flash drives as a transparent cache. Hardware RAID controllers typically

allow adding SSDs as transparent block level cache and also zfs supports a similar

functionality through the L2ARC and ZIL. While this approach is also possible with

BeeGFS, the effectiveness of the flash drives in this case is rather limited, as the

transparent cache never knows which files will be accessed next by the user and

how long the user will be working with those files. Thus, most of the time the

applications will still be bound by the access to the spinning disks.

Buddy Mirroring

takes advantage of

the network’s full-

duplex capabilities for

high throughput.

Storage Pools were

designed to provide

full all-flash

performance in

systems with high

capacity based on

spinning disks.

 15

To enable users to get the full all-flash performance for the projects on which they

are currently working, the BeeGFS storage pools feature makes the flash drives

explicitly available to the users. This way, users can request from BeeGFS (through

the beegfs-ctl command line tool) to move the current project to the flash drives

and thus all access to the project files will be served directly and exclusively from

the flash drives without any access to the spinning disks until the user decides to

move the project back to the spinning disks.

The placement of the data is fully transparent to applications. Data stays inside

the same directory when it is moved to a different pool and files can be accessed

directly without any implicit movement, no matter which pool the data is

currently assigned to. To prevent users from putting all their data on the flash

pool, different quota levels exist for the different pools, based on which a

sysadmin could also implement a time-limited reservation mechanism for the

flash pool.

Figure 8: Storage Pools

However, while the concept of storage pools was originally developed to take

optimum advantage of flash drives in a system with high capacity based on

spinning disks, the concept is not limited to this particular use-case. The sysadmin

can group arbitrary storage targets in such pools, no matter which storage media

they use and there can also be more than just two pools.

A storage pool simply consists of one or multiple storage targets. If storage buddy

mirroring is enabled, both targets of a mirror buddy group must be in the same

pool, and the mirror buddy group itself must also be in the same storage pool.

Storage Pools are not

limited to just two

pools of flash drives

and spinning disks.

 16

5. BeeOND: BeeGFS On Demand

Nowadays, compute nodes of a cluster typically are equipped with internal flash

drives to store the operating system and to provide a local temporary data store

for applications. But using a local temporary data store is often inconvenient or

not useful for distributed applications at all, as they require shared access to the

data from different compute nodes and thus the high bandwidth and high IOPS of

the SSDs is wasted.

BeeOND (dubbed “beyond” and short for “BeeGFS On Demand”) was developed

to solve this problem by enabling the creation of a shared parallel file system for

compute jobs on such internal disks. The BeeOND instances exist temporary

exactly for the runtime of the compute job exactly on the nodes that are allocated

for the job. This provides a fast, shared all-flash file system for the jobs as a very

elegant way of burst buffering or as the perfect place to store temporary data.

This can also be used to remove a lot of nasty I/O accesses that would otherwise

hit the spinning disks of your global file system.

Figure 9: BeeOND: BeeGFS on demand

BeeOND is based on the normal BeeGFS services, meaning your compute nodes

will also run the BeeGFS storage and metadata services to provide the shared

BeeOND elegantly

unleashes the

potential of the flash

drives that you

already have in the

compute nodes.

 17

access to their internal drives. As BeeOND does not exclusively access the internal

drives and instead only stores data in a subdirectory of the internal drives, the

internal drives are also still available for direct local access by applications.

While it is recommended to use BeeOND in combination with a global BeeGFS file

system, it can be used independent of whether the global shared cluster file

system is based on BeeGFS or on any other technology. BeeOND simply creates a

new separate mount point for the compute job. Any of the standard tools (like cp

or rsync) can be used to transfer data into and out of BeeOND, but the BeeOND

package also contains a parallel copy tool to transfer data between BeeOND

instances and another file system, such as your persistent global BeeGFS.

BeeOND instances can be created and destroyed with just a single simple

command, which can easily be integrated into the prolog and epilog script of the

cluster batch system, such as Torque, Slurm or Univa Grid Engine.

6. Cloud Integration

BeeGFS is available on the Amazon Web Services (AWS) as well as on Microsoft

Azure.

For the Amazon Web Services integration, it comes in two flavors: The community

support edition is completely free of software charges, while the professional

support edition adds a monthly fee. The BeeGFS instances can be launched

directly from AWS Marketplace, where you can also find details on pricing model.

Launching BeeGFS on AWS will result in a fully working BeeGFS setup, which is

readily available to store your large data sets for high performance access.

By default, the BeeGFS instances on AWS use Elastic Block Storage (EBS) volumes

to preserve your data even when all virtual machines are shut down, so that you

can come back later to resume working with your data sets and don’t need to

keep your virtual machines running while you are not using them.

The Microsoft Azure implementation provides Resource Manager templates that

will help deploying a BeeGFS instance based on CentOS 7.2.

Of course, if you are moving your datacenter into the cloud, it is also possible to

perform your own BeeGFS installation for full flexibility instead of using the

predefined templates and to get a normal BeeGFS professional support contract

like on-premise setups.

BeeOND can also be

used when your

global cluster file

system is not based

on BeeGFS.

BeeGFS can be used

on-premise or in the

cloud.

 18

7. Getting started and typical Configurations

To get started with BeeGFS, all you need is a Linux machine to download the

packages from www.beegfs.io and to install them on. If you want to, you can start

with only a single machine and a single drive to do some initial evaluation. In this

case, the single drive would be your management, metadata and storage target at

the same time. The quickstart walk-through guide will show you all the necessary

steps.

Typically, the smallest reasonable production system as dedicated storage is a

single machine with two SSDs in RAID1 to store the metadata and a couple of

spinning disks (or SSDs) in a hardware RAID6 or software zfs RAID-z2 to store file

contents. A fast network (such as 10GbE, OmniPath or InfiniBand) is beneficial but

not strictly necessary. With such a simple and basic setup, it will be possible to

scale in terms of capacity and/or performance by just adding disks or more

machines.

Often, BeeGFS configurations for a high number of clients in cluster or enterprise

environments consist of fat servers with 24 to 72 disks per server in several RAID6

groups, usually 10 or 12 drives per RAID6 group. A network, usually InfiniBand, is

used to provide high throughput and low latency to the clients.

In smaller setups (and with fast network interconnects), the BeeGFS metadata

service can be running on the same machines as the BeeGFS storage service. For

large systems, the BeeGFS metadata service is usually running on dedicated

machines, which also allows independent scaling of metadata capacity and

performance.

8. Contact Information

If you want to keep up to date regarding news, events and features of BeeGFS,

you should subscribe to the monthly newsletter at thinkparq.com/news or follow

us on twitter. On the ThinkParQ news page, you will also find the release

announcement list, a special low volume mailing list where you get a notification

when a new BeeGFS release becomes available.

If you want to become part of the BeeGFS community, you can also join the

BeeGFS user mailing list by subscribing at beegfs.io/support. On the public mailing

list, users can ask other users for help or discuss interesting topics. Note that the

BeeGFS can be tried

out even with only a

single machine for

testing.

Questions?

info@thinkparq.com

http://www.beegfs.io/
https://www.beegfs.io/wiki/ManualInstallWalkThrough
https://thinkparq.com/news
https://twitter.com/BeeGFS
https://www.beegfs.io/support
mailto:info@thinkparq.com

 19

development team does not regularly check the posts on the public mailing list, as

this is only part of the professional support.

If you are interested in more information, need help building your first BeeGFS

storage system or want to become a BeeGFS partner for turn-key solutions, you

can contact us at: info@thinkparq.com

mailto:info@thinkparq.com

