

BeeGFS® Benchmarks on JURON

Alexander Eekhoff, Bastian Tweddell, Dirk Pleiter

October 2017 – v 1.0

Streaming and Metadata Performance on OpenPOWER with NVMe

1

Index
1 Overview .. 2

2 System Description .. 2

3 Benchmarks ... 3

4 Tuning .. 4

4.1 BeeGFS Storage Service Tuning ... 4

4.2 BeeGFS Metadata Service Tuning ... 5

4.3 BeeGFS Client Tuning .. 6

4.4 BeeGFS Striping Settings Tuning ... 6

5 Results ... 7

5.1 Sustained Streaming Throughput ... 7

5.2 Metadata Throughput ... 8

5.2.1 Metadata Throughput using 2 Metadata Nodes 8

5.2.2 Metadata Throughput using 16 Metadata Nodes 10

6 Conclusion ... 12

7 Commands ... 12

7.1 IOR ... 12

7.2 Mdtest ... 13

2

1 Overview

JURON is a HPC system delivered by IBM and NVIDIA as part of an R&D contract awarded in

the context of a pre-commercial procurement run by the Human Brain Project (HBP). This

system is used to demonstrate among others new solutions for integration of dense memory

technologies like high-performance SSDs. More specifically, a software stack was developed

that allows this memory being accessed through get or put operations within a global address

space. In this document, we consider accessing this dense memory via a parallel file system

and well-established POSIX semantics.

This document presents a summary of the results of a series of benchmarks executed on

BeeGFS services running on the JURON cluster at the Forschungszentrum Jülich. It also

presents the best system configuration identified during the experiment.

2 System Description

The cluster consists of 18 nodes. Each node had the following configuration:

• 2 IBM POWER8 processors (up to 4.023 GHz, 2x 10 cores, 8 threads/core)

• 256 GB DDR4 memory

• Non-Volatile Memory: HGST Ultrastar SN100 Series NVMe SSD, partitioned:

▪ 1 partition of 745 GB for storage

▪ 1 partition of 260 GB for metadata1

• Mellanox Technologies MT27700 Family [ConnectX-4], EDR InfiniBand.

▪ All nodes were connected to a single EDR InfiniBand switch

• CentOS 7.3, Linux kernel 3.10.0-514.21.1.el7

1 The system was already prepared with these aligned partitions. The size of the metadata
partition could have been much smaller. A single partition for metadata and storage is
possible as well.

Juron is a HPC system

at FZ Jülich for the

Human Brain Project

The cluster consists of

18 POWER8 servers

with HGST Ultrastar

NVMe SSD

At-A-Glance

Figure 1: System Overview

3

• During the tests, 2 nodes showed systematically lower performance than the other 16

nodes and were excluded, so that the benchmarks ran on 16 nodes.

• JURON was designed in a converged setup, where computation and storage services

run on the same servers. (see Figure 1)

BeeGFS major release 6 was used with the following configuration:

• BeeGFS client service version 6.16

• BeeGFS mgmtd, meta, and storage services version 6.14

• The storage and client services were running on all nodes

• For streaming benchmarks, metadata services were

running on 2 nodes

▪ For streaming benchmarks, metadata performance is

not relevant

• For metadata benchmarks, metadata services were running

on:

▪ (1) 2 nodes

▪ (2) All nodes

3 Benchmarks

The following benchmark tools were used to measure performance:

• IOR 3.0.0 for measuring the sustained throughput of the BeeGFS storage service.

• Mdtest 1.9.3 for measuring the performance of the BeeGFS metadata service.

BeeGFS consists of 3

major services:

Storage, Metadata

and Client

Figure 2: BeeGFS Services
Overview

JURON was designed

as a converged setup

4

4 Tuning

The following tables provide the values of the system and service tuning options that led

BeeGFS to achieve the highest performance during the experiment. For a detailed

explanation of their meaning and how they can be set, please go to

https://www.beegfs.io/wiki/TableOfContents.

4.1 BeeGFS Storage Service Tuning

Formatting Options Value

NVMe local Linux file system XFS

Partition alignment yes

XFS Mount Options Value

Last file and directory access noatime, nodiratime

Log buffer tuning logbufs=8, logbsize=256k

Streaming performance optimization largeio, inode64, swalloc

Streaming write throughput allocsize=131072k

Write barriers nobarrier

IO Scheduler Options2 Value

Scheduler deadline

Number of schedulable requests (nr_requests) 1023 (max)

Read-ahead data (read_ahead_kb) 4096

Max kilobytes per filesystem request (max_sectors_kb) 512

BeeGFS Storage Service Options Value

Worker threads (tuneNumWorkers) 64

tuneBindToNumaZone 0

2 NVMe devices need different scheduler properties compared to HDDs and therefore these
values were adapted from the general tuning recommendation on the BeeGFS website.

The used tuning options

are close to the general

storage tuning

recommendations on

the BeeGFS website:

Storage Tuning

https://www.beegfs.io/wiki/TableOfContents
https://www.beegfs.io/wiki/StorageServerTuning

5

4.2 BeeGFS Metadata Service Tuning

Formatting Options Value

NVMe local Linux file system ext4

Minimize access times for large directories -Odir_index

Large inodes -I 512

Number of inodes -i 2048

Large journal -J size=400

Extended attributes user_xattr

Partition alignment yes

EXT4 Mount Options Value

Last File and Directory Access noatime, nodiratime

Write Barriers nobarrier

IO Scheduler Options Value

Scheduler Same as Storage Service

Number of schedulable requests (nr_requests) Same as Storage Service

Read-ahead data (read_ahead_kb) Same as Storage Service

BeeGFS Meta Service Options Value

Worker threads (tuneNumWorkers) 120

Requests in flight to the same server (connMaxInternodeNum) 32

tuneBindToNumaZone -

The used tuning options

are close to the general

metadata tuning

recommendations on

the BeeGFS website:

Metdata Tuning

https://www.beegfs.io/wiki/MetaServerTuning

6

4.3 BeeGFS Client Tuning

Options Value

Requests in flight to the same server (connMaxInternodeNum) 18

Number of available RDMA buffers (connRDMABufNum) 70

Maximum size of RDMA buffer (connRDMABufSize) 8192

Remote fsync (tuneRemoteFSync) true

4.4 BeeGFS Striping Settings Tuning

Options Value

Chunk size (beegfs-ctl pattern option: --chunksize) 512K

Storage targets per file (beegfs-ctl pattern option: --numtargets) 1

7

5 Results

5.1 Sustained Streaming Throughput

For the storage throughput tests, the IOR benchmark was used. At least two times the RAM

size of the involved storage servers was used for writing and reading. Each execution started

a different number of processes, ranging from 1 to 320, and was repeated 3 times. For less

than 16 processes 520 GiB per process and for 16 or more processes a total 8,200 GiB was

written and read in each IOR execution. Figure 3 and Table 1 show the mean (± standard

deviation) write and read throughput observed in the system.

Figure 3: Read and Write Throughput (Min (#Proc*520GB, 8,200GB);
 16 Client Nodes; 16 Storage Targets)

0

10000

20000

30000

40000

50000

1 2 4 8 16 32 64 128 256 512

Th
ro

u
gh

p
u

t
[M

iB
/s

]

Processes

Throughput (Read/Write)

WriteMean ReadMean

8

 Write [MiB/s] Read [MiB/s]

#Processes #Proc/Node Mean StDev Mean StDev

1 1 1612 50 2442 99

2 1 3314 133 4903 106

4 1 6673 155 9865 102

8 1 13022 76 19716 358

16 1 25837 341 38470 420

32 2 26154 64 45337 560

64 4 26427 136 45890 704

96 6 26477 16 46430 727

128 8 26560 94 45923 343

160 10 26553 163 45019 870

240 15 26562 66 44464 388

320 20 26593 129 43835 274

Table 1: Read and Write Throughput
(Min (#Proc*520GB, 8,200GB); 16 Client Nodes; 16 Storage Targets)

The results above show that the system can deliver a (mean) maximum of 26,593 MiB/s write

and 46,430 MiB/s read throughput. These values are equivalent to 104 % and 97 %,

respectively, of the manufacturer specifications of the underlying NVMe devices. The results

show approximately linear scaling for both, writing and reading, until saturation when all

storages nodes are accessed. For write operations the values are always around 100 % of the

manufacturer specifications. For read operations with one process per node the system

achieves approximately 80 % of the manufacturer specifications and as soon as two or more

processes per node are running, over 90 % of the manufacturer specifications are achieved.

5.2 Metadata Throughput

Metadata benchmarks were run with two different configurations. In the first configuration,

metadata services were running on two nodes and in the second configuration metadata

services were running on all 16 nodes in the used system.

5.2.1 Metadata Throughput using 2 Metadata Nodes
Figures 4 and 5 and Table 2 show the mean (± standard deviation) throughput of the

metadata service observed in the system when processing a total of 1,000,000 empty files.

Each execution was carried out using between 2 to 64 processes and was repeated 3 times.

Measured values are

equivalent to 104%

(write) an 97% (read)

of the NVMe

manufacturer

specifications

9

Figure 4: File Creation and Removal Throughput
(1,000,000 Files, 16 Client Nodes, 2 Metadata Services)

Figure 5: File Stat Throughput
(1,000,000 Files; 16 Client Nodes; 2 Metadata Services)

 0

 10 000

 20 000

 30 000

 40 000

 50 000

 60 000

 70 000

 80 000

 90 000

2 4 8 16 32 64

O
p

er
at

io
n

s
[1

/s
]

Processes

Create/Remove Operations (2 MD Nodes)

Create Remove

 0

 50 000

 100 000

 150 000

 200 000

 250 000

2 4 8 16 32 64

O
p

er
at

io
n

s
[1

/s
]

Processes

Stat Operations (2 MD Nodes)

Stat

10

 Mean [1/s] StDev [1/s]

#Processes #Proc/Node
File

Creation
File Stat

File

Remove

File

Creation
File Stat

File

Remove

2 1 11754 48161 15 670 988 2835 157

4 1 16888 74821 24 329 1201 4208 206

8 1 29909 138987 37 848 1033 4242 239

16 1 44664 183778 56 337 462 5700 212

32 2 55089 197786 72 144 210 1913 798

64 4 60009 109092 79 530 794 2221 426

Table 2: File Creation, Stat and Remove Operations (2 Metadata Services)

The results above show monotonous scaling for the create and remove operations up to

30,000 operations and 40,000 operations per second and per node, respectively. For the file

stat operations, the throughput is also increasing over the main number of processes up to a

maximum value of approximately 100,000 operations per second and per node.

5.2.2 Metadata Throughput using 16 Metadata Nodes
Figures 6 and 7 and Table 3 show the mean (± standard deviation) throughput of the

metadata service observed in the system when processing a total of 8,000,000 empty files.

Each execution was carried out using between 4 to 64 processes, and was repeated 3 times.

Figure 6: File Creation and Removal Throughput

(8,000,000 Files, 16 Client Nodes, 16 Metadata Services)

 0

 100 000

 200 000

 300 000

 400 000

 500 000

4 8 16 32 64

O
p

er
at

io
n

s
[1

/s
]

Processes

Create/Remove Operations (16 MD Nodes)

Create Remove

For file stat operations

the throughput is

increasing up to

100,000 ops/s per

metadata server

11

Figure 7: File Creation and Removing Throughput

(8,000,000 Files, 16 Client Nodes, 16 Metadata Services)

 Mean [1/s] StDev [1/s]

#Processes #Proc/Node
File

Creation
File Stat

File

Remove

File

Creation
File Stat

File

Remove

4 1 25768 112917 42941 42 186 103

8 1 50499 220310 81612 39 203 63

16 1 97537 420528 151805 213 1274 1987

32 2 176556 737545 260537 1746 13717 10344

64 4 292357 1123413 395549 888 4222 20176

Table 3: File Creation, Stat and Remove Operations (16 Metadata Services)

Like the results with two metadata nodes, the results with 16 metadata nodes show also

monotonous scaling for the create and remove operations up to almost 20,000 operations

and 25,000 operations per second and per node, respectively. The throughput of file stat

operations increases monotonously as well up to a maximum value of approximately 70,000

operations per second and per node.

 0

 200 000

 400 000

 600 000

 800 000

1 000 000

1 200 000

4 8 16 32 64

O
p

er
at

io
n

s
[1

/s
]

Processes

Stat Operations (16 MD Nodes)

StatWith 16 metadata

servers, the system

delivers 300,000 file

creates and over

1,000,000 stat

operations per second

12

6 Conclusion

BeeGFS on JURON showed excellent benchmark results for storage operations in a converged

setup, where applications and BeeGFS storage services are running on the same machines.

Based on the high throughput and high number of metadata operations that can be achieved

with this system, the internal NVMe drives make this an interesting solution also for burst

buffering before staging out computation results to a long-term storage or for prefetching

data before a compute job.

The characteristics of the JURON system based on IBM POWER8 processors and NVMe SSDs

indicate very good preconditions for compute-intensive and I/O-intensive applications.

7 Commands

This section shows the commands that were used on the compute nodes to run the streaming

and metadata benchmarks.

7.1 IOR

#!/bin/bash

ior_dir=~/ior_work

nodes_file=~/nodeslist

max_space=8200

space_per_node=520

num_procs_array=(1 2 4 8 16 32 64 96 128 160 240 320)

for num_procs in "${num_procs_array[@]}"; do

 results_file="${ior_dir}/results.log"

 if [$num_procs -lt 16]

 then

 space_per_proc=532480

 else

 space_per_proc=$(($max_space*1024/$num_procs))

 fi

 echo $space_per_proc

 header="processes: ${num_procs} "

 echo ${header}

 printf "\n\n\n${header} \n\n" >> ${results_file}

 mpirun -hostfile $nodes_file --map-by node -np ${num_procs}

~/ior-master/src/ior -wr -i2 -t2m -b ${space_per_proc}m -F -e -g -o

/mnt/beegfs/test.ior | tee -a ${results_file}

done

13

7.2 Mdtest

#!/bin/bash

mdtest_dir=~/mdtest_work

nodes_file=~/nodeslist

num_files=1000000

num_procs_array=(2 4 8 16 32 64)

for num_procs in "${num_procs_array[@]}"; do

 results_file="${mdtest_dir}/results.log"

 files_per_dir=$(($num_files/64/$num_procs))

 header="processes: ${num_procs} "

 echo ${header}

 printf "\n\n\n${header} \n\n" >> ${results_file}

 mpirun -hostfile $nodes_file --map-by node -np ${num_procs}

~/mdtest/mdtest -C -T -d /mnt/beegfs/mdtest -i 1 -I ${files_per_dir}

-z 2 -b 8 -L -F -r -u | tee -a ${results_file}

done

